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There is near unanimous scientific consensus that the
rising atmospheric concentration of greenhouse gases
due to human actions will cause warming (and other
climatic changes) at Earth’s surface. The Inter-
governmental Panel on Climate Change (IPCC),
drawing on the published results of leading modelling
groups around the world, forecasts an increase in world
average temperature by 2100 within the range
1·4–5·8ºC.1 The increase will be greater at higher
latitudes and over land. Global average annual rainfall
will increase, although many mid latitude and lower
latitude land regions will become drier, whereas
elsewhere precipitation events (and flooding) could
become more severe. Climate variability is expected to
increase in a warmer world.

Climatological research over the past two decades
makes clear that Earth’s climate will change in response
to atmospheric greenhouse gas accumulation. The
unusually rapid temperature rise (0·5ºC) since the mid-
1970s is substantially attributable to this anthropogenic
increase in greenhouse gases.1,2 Various effects of this
recent warming on non-human systems are apparent.3–9

In view of greenhouse gas longevity and the climate
system’s inertia, climate change would continue for at
least several decades even if radical international pre-
emptive action were taken very soon.1,10

In the 1990s, climate change science relied on climate-
system models with good atmospheric dynamics but
simple representations of the ocean, land surface, sea
ice, and sulphate aerosols, at coarse spatial resolution.
Meanwhile, much has been learnt about how Earth’s
climate system responds to changes in natural and
human generated effects: solar activity, volcanic
eruptions, aerosols, ozone depletion, and greenhouse
gas concentration. Today’s global climate models are
more comprehensive: they include more detailed
representations of the ocean, land-surface, sea-ice,
sulphate and non-sulphate aerosols, the carbon cycle,
vegetation dynamics, and atmospheric chemistry, and at
finer spatial resolution.10 Recent understanding of how
sea surface temperature affects the characteristics of
tropical storms and cyclones, and how ocean subsurface

temperatures, thermocline depths and thicknesses affect
activity of the El Niño Southern Oscillation (ENSO)
cycle, tropical cyclone intensification, and landfall
prediction will further enrich modelling capacity. 

Today’s models have been well validated against the
recorded data from past decades. Climate model
projections, driven by anticipated future greenhouse gas
and aerosol emissions, indicate that Earth will continue
to warm, with associated increases in sea level and
extreme weather events. 

Modelling cannot be an exact science. There is debate
about humankind’s future trajectories for greenhouse
gas emission. There are residual uncertainties about the
sensitivity of the climate system to future atmospheric
changes. The range in the forecast increase in world
average temperature (1·4–5·8oC) by 2100 indicates both
uncertainty about future greenhouse gas emissions and
marginal differences in design of the several leading
global climate models (UK, Germany, USA, etc). The
spatial pattern of projected temperature and particularly
rainfall changes also differ between models. Hence,
estimates of climate changes over coming decades are
indicative rather than predictive.1 Note also that the
uncertainty is symmetrical: underestimation of future
climate change is as likely as overestimation. Longer
term, the probability of exceeding critical thresholds—
causing step-changes in climate, environment and
related effects—will increase.1,10

A fundamental global environmental change, affecting
physical systems and ecosystems, will affect human
health in many ways. However, many details are
debated. What health effects will occur? When will they
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Climate change and human health: present and future risks
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There is near unanimous scientific consensus that greenhouse gas emissions generated by human activity will
change Earth’s climate. The recent (globally averaged) warming by 0·5ºC is partly attributable to such anthropogenic
emissions. Climate change will affect human health in many ways—mostly adversely. Here, we summarise the
epidemiological evidence of how climate variations and trends affect various health outcomes. We assess the little
evidence there is that recent global warming has already affected some health outcomes. We review the published
estimates of future health effects of climate change over coming decades. Research so far has mostly focused on
thermal stress, extreme weather events, and infectious diseases, with some attention to estimates of future regional
food yields and hunger prevalence. An emerging broader approach addresses a wider spectrum of health risks due to
the social, demographic, and economic disruptions of climate change. Evidence and anticipation of adverse health
effects will strengthen the case for pre-emptive policies, and will also guide priorities for planned adaptive strategies.

Search strategy and selection criteria

We used keyword combinations to search MEDLINE and
Science Citation Index databases for articles published in all
languages during the years 1995–2005, including the search
terms “climate”, “climate change”, “health”, “health effects”,
“dengue”, “malaria”, “heat”, “heat waves”, “time-series”,
“floods”, “extreme weather”, and “harmful algae”. 
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take place? Will there be both beneficial and adverse
effects?

Publications about relations between (natural)
variation in meteorological variables, especially
temperature, and health effects is extensive,
encompassing several decades. Many papers have been
published, for example, on the association of heat waves
with mortality excesses. Much of this empirical evidence
is uncontentious, and rather than reviewing it
comprehensively, we have cited representative examples
of research published in mainstream journals.
Publications estimating, via modelling and
extrapolation, how climate change will affect population
health in future are much less extensive. They also entail
several controversies (including debate over the relative
effects of climatic versus social, economic, and
topographic conditions on vector-borne infectious
disease transmission). We cite representative reports to
illustrate the main contending points of view. There is
little empirical research exploring whether climate
change over the past three decades has affected health,
and the few papers attributing some particular recent
health changes to climate change are debated. We have
attempted to represent those debates fairly. Finally, little
research has been done on the indirect pathways that
link climate change to resultant social, economic, and
demographic disruptions and their knock-on health
effects. We comment on these because they are
important, despite the sparse research.

There are several limitations to the available
information. First, most empirical climate-health
studies and most national assessments of health risks
from future climate change have been done in high-
income countries. Second, the estimation of future
health trends and effects is necessarily subject to various
uncertainties. Hence, our review inevitably differs from
a more conventional review of published empirical
biomedical evidence.

Figure 1 summarises the main pathways by which
climate change can affect population health. The several
main climatic-environmental manifestations of climate
change are shown in the central section. The right-hand
boxes, from top to bottom, entail an increase in
complexity of causal process and, therefore, in the
likelihood that health effects will be deferred or
protracted. Most of the diverse anticipated health
consequences are adverse, but some would be beneficial.
Milder winters would reduce the normal seasonal peak
mortality in winter in some temperate developed
countries, and warming or drying in already hot regions
would reduce the viability of mosquitoes (table).

The climate-health relationships that are the easiest to
define and study are those in relation to heatwaves, the
physical hazards of floods, storms, and fires, and various
infectious diseases (especially those that are vector-
borne). Other important climatic risks to health, from
changes in regional food yields, disruption of fisheries,
loss of livelihoods, and population displacement
(because of sea-level rise, water shortages, etc) are less
easy to study than these factors and their causal
processes and effects are less easily quantified. 

Climate variations and health
Before the prospect of anthropogenic climate change
emerged, epidemiologists were not greatly interested in
climate-health relations. Modern epidemiology has
focused mainly on studying risk factors for non-
communicable diseases in individuals, not populations.
Meanwhile, there have been occasional studies exam-
ining deaths due to heatwaves, some epidemiological
studies of air pollution incorporating temperature as a
covariate, and a continuation of the longer standing
research interest in meteorological effects on microbes,
vectors, and infectious disease transmission. Overall, the
health risks of climate-related thermal stress, floods, and
infectious diseases have been the most amenable to
conventional epidemiological studies.

Extreme weather events
Extreme weather events include periods of very high
temperature, torrential rains and flooding, droughts,
and storms. Over time, regional populations adapt to the
local prevailing climate via physiological, behavioural,
and cultural and technological responses. However,
extreme events often stress populations beyond those
adaptation limits. Understanding the health risks from
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Figure 1: Schematic summary of main pathways by which climate change affects population health
Mitigation refers to true primary prevention (reducing greenhouse gas emissions). Adaptation (a form of late
primary prevention) entails interventions to lessen adverse health effects. 
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these events is important because the future frequency
and intensity of extreme events is expected to change as
both climatic means and variability change.1

Thermal stress
Populations typically display an optimum temperature at
which the (daily or weekly) death rate is lowest. Mortality
rates rise at temperatures outside this comfort zone.11

Figure 2 shows a typical U-shaped relation. The trough
represents the comfort zone; the steeper (right-side) arm
of each line shows the mortality increase at hot
temperatures, and the shallower (left-side) arm of each
line shows the increase with colder temperatures. 

The temperature-mortality relation varies greatly by
latitude and climatic zone. People in hotter cities are more
affected by colder temperatures, and people in colder
cities are more affected by warmer temperatures.11,12

Regions where housing provides poor protection against
cold have higher excess winter mortality than expected for
that location.13 In the UK and some other northern high-
latitude countries, seasonal death rates and illness events
are higher in winter than in summer.14–18,30,102,103 There, the
role of cold temperature itself, beyond the role of seasonal
infectious agents (influenza in elderly people104 and
respiratory syncytial virus in infants105) and seasonal
haematological changes,102 remains unresolved.

Most epidemiological studies of extreme temperatures
have been done in Europe and North America. These

studies have shown a positive association between
heatwaves and mortality, with elderly people (who have
diminished physiological capacity for thermoreg-
ulation),19,20 especially women,21–23 being the most
affected. Other research indicates that mentally ill
people,106 children,24,107 and others in thermally stressful
occupations or with pre-existing illness are also
vulnerable. The striking mortality excess (about
30 000 deaths) during the extreme heatwave of August,
2003, in Europe,25 especially France,26 attests to the
lethality of such events. The actual burden of life-years
lost depends on the proportion of those deaths that is
due to short-term mortality displacement in people
otherwise likely to have died within the next 1–2 months.
In the USA this proportion is around 30–40%.108

Most heatwave deaths occur in people with pre-existing
cardiovascular disease (heart attack and stroke) or chronic
respiratory diseases. People living in urban environments
are at greater risk than those in non-urban regions.27

Thermally inefficient housing28 and the so-called urban
heat island effect (whereby inner urban environments,
with high thermal mass and low ventilation, absorb and
retain heat) amplify and extend the rise in temperatures
(especially overnight).20 In 2003 in Paris26 many nursing
homes and other assisted-living and retirement
communities were not air-conditioned, and elderly
residents might not have been promptly moved to air-
conditioned shelters and rehydrated with fluids. 
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Adverse effect Beneficial effect References

Climate variability Climate change 

Temperature extremes More daily deaths and disease Reduced winter deaths and disease 11–13, 14, 15–18, 30–36
(more very hot days, events—primarily due to more events in (at least some) temperate 19–29
possibly fewer very cold days) very hot days countries
Floods More injuries, deaths and other 37–44 2, 34, 45–47

sequelae (infectious disease, mental 
health disorders)

Aero-allergen production Increased allergic disorders (hay Reduced exposure to aero-allergens in 48
fever, asthma) due to longer pollen some regions due to lesser production 
season or shorter season of pollen circulation

Food-poisoning (diarrhoeal Greater risks at higher temperature 40, 49–55 34
disease) (especially salmonellosis)
Water-borne infection Cholera risk might be amplified by Less risk where (heavy) rainfall diminishes 40, 56–61 62–64

coastal/estuarine water warming, 
local flooding

Vector-borne infections Mosquito-borne infections tend to Mosquito reproduction and survival could 65–76 34, 60, 77–95
increase with warming and certain be impaired by altered rainfall and surface  
changes in rainfall patterns: heightened water and by excessive heat: reduced 
transmission. Likewise tick-borne transmission. Similar determinants may apply  
infections, although via more complex to ticks, snails and other vectors.
ecological changes

Regional crop yields Reductions in many low-latitude and Increases in currently too-cold regions (might 34, 96, 97
low-rainfall regions not be sustained with continuing climate change)

Fisheries Declines or shifts in local fisheries:  Latitudinal shifts of fisheries, with ocean 98–100
protein shortages (in poor populations).  warming, may benefit new host populations
Possible increased contamination

Sea-level rise Health consequences of population 101
displacement, lost livelihood,  exposure 
to coastal storm surges and floods. 
Salinisation of freshwater and coastal soil.

Table: Main known and probable health hazards of climate variability and climate change  
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Physiological and behavioural adaptations can reduce
heatwave morbidity and mortality,20 as can changes in
public health preparedness.109 An overall drop in
mortality associated with heatwaves across a recent
three-decade period in 28 US cities29 shows that weather-
mortality relations can change over time. This decline
indicates that adaptations to climate change (air
conditioning, improved health care, and public
awareness—along with changes in underlying health
status) can reduce risks. Even so, under extreme
conditions an increase in deaths can arise in cities that
are accustomed to heatwaves and have high levels of
prevention awareness and air conditioning.110

Floods
Floods are low-probability, high-impact events that
overwhelm physical infrastructure, human resilience,
and social organisation. From 1992 to 2001, there were
2257 reported disasters due to droughts or famines,
extreme temperature, floods, forest/scrub fires,
cyclones, and windstorms. The most frequent natural
weather disaster was flooding (43%), killing almost
100 000 people and affecting over 1·2 billion people.37

Floods result from the interaction of rainfall, surface
run-off, evaporation, wind, sea level, and local
topography. In inland areas, flood regimens vary
substantially depending on catchment size, topography,
and climate.111 Where people live close to rivers, natural
flows have usually been modified to avoid floods (eg, by
constructing levees, dikes, and dams). Water
management practices, urbanisation, intensified land
use, and forestry can substantially alter the risks of
floods.38,39,45,111,112 The trend in high-income countries for
people to move to the coast, along with the world’s
topographic profile of deltas and coral atolls, means that
many settlements and much arable land are at
increasing risk from flooding due to rise of sea level.46

Floods have recently tended to intensify, and this trend
could increase with climate change.3,47 The ENSO cycle
determines inter-annual variability in temperature and
in rainfall, and the likelihood of flooding, storms, and
droughts in many regions.113 It is a major part of the
world’s pre-eminent source of climate variability: the
Pacific Ocean and its several regional climatic
oscillations. It has a far-reaching, quasi-periodic,
westward-extending effect every 3–6 years. Some health
consequences arise during or soon after the flooding
(such as injuries, communicable diseases,40 or exposure
to toxic pollutants41), whereas others (malnutrition42 and
mental health disorders43,44) occur later. Excessive rainfall
facilitates entry of human sewage and animal wastes
into waterways and drinking water supplies,
potentiating water-borne diseases.56–59 Globally, disaster
effects are greatest for droughts (and associated
famines) because of their regional extent.114

Infectious diseases
Transmission of infectious disease is determined by
many factors, including extrinsic social, economic,
climatic, and ecological conditions,115 and intrinsic
human immunity (analytic methods that differentiate
extrinsic and intrinsic influences are now evolving116).
Many infectious agents, vector organisms, non-human
reservoir species, and rate of pathogen replication are
sensitive to climatic conditions.60,61 Both salmonella and
cholera bacteria, for example, proliferate more rapidly at
higher temperatures, salmonella in animal gut and food,
cholera in water. In regions where low temperature, low
rainfall, or absence of vector habitat restrict trans-
mission of vector-borne disease, climatic changes could
tip the ecological balance and trigger epidemics.
Epidemics can also result from climate-related migra-
tion of reservoir hosts or human populations.117

In many recent studies investigators have examined
the relation between short-term climatic variation and
occurrence of infectious disease—especially vector-
borne disease. Studies in south Asia and South America
(Venezuela and Columbia) have documented the
association of malaria outbreaks with the ENSO cycle.65–68

In the Asia-Pacific region, El Niño and La Niña events
seem to have affected the occurrence of dengue fever
outbreaks.69–71 Similarly, inter-annual (especially ENSO-
related) variations in climatic and environmental
conditions in Australia affect outbreaks of Ross River
virus disease.72,73,118

Many of these associations between infectious
diseases and El Niño events have a plausible climatic
explanation. High temperatures in particular affect
vector and pathogen. The effect of rainfall is more
complex. For example, in tropical and subtropical
regions with crowding and poverty, heavy rainfall and
flooding may trigger outbreaks of diarrhoea, whereas
very high rainfall can reduce mosquito populations by
flushing larvae from their habitat in pooled water. 
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Figure 2: Schematic representation of how an increase in average annual
temperature would affect annual total of temperature-related deaths, by
shifting distribution of daily temperatures to the right
Additional heat-related deaths in summer would outweigh the extra winter
deaths averted (as may happen in some northern European countries). Average
daily temperature range in temperate countries would be about 5–30ºC.
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Increased notifications of (non-specific) food
poisoning in the UK49,50 and of diarrhoeal diseases in
Peru and Fiji51,59 have accompanied short-term increases
in temperature. Further, strong linear associations have
been noted between temperature and notifications of
salmonellosis in European countries52 and Australia,53

and a weak seasonal relation exists for campylobacter.54,55

Are any health effects of climate change
detectable?
Since global temperatures have risen noticeably over the
past three decades (see introduction), some health
outcomes are likely to already have been affected.
However, there is nothing distinctive about the actual
types of health outcomes due to longer-term climate
change, versus shorter-term natural variation. Hence,
the detection of health effects due to climate change is at
this early stage difficult. However, if changes in various
health outcomes occur, each plausibly due to the
preceding climate change, then pattern-recognition can
be used—as was recently used for assessment of non-
human effects of recent climate change.119

The complexity of some causal pathways makes
attribution difficult. Recent climate change might have
contributed (via changes in temperature, rainfall, soil
moisture, and pest and disease activity) to altered food
yields in some regions.96 In food-insecure populations
this alteration may already be contributing to
malnutrition. Subsistence hunting and fishing have
been much harmed by recent climate changes in
Alaska, through stresses on fish and wildlife driven by
warming of air and sea, sea ice retreat, and ecosystem
shifts.98

Some actions taken in response to the advent of
climate change also entail health risks. Sea level
(figure 1) has risen moderately in recent decades, and
population relocation from some of the lowest-lying
Pacific islands is starting to take place.101 Such
displacement often increases nutritional, physical,
infectious disease, and mental health risks. 

Extreme events
The number of people adversely affected by El Niño-
related weather events over three recent decades,
worldwide, appears to have increased greatly.120

Systematic studies of trends over time in the effects of
extreme events on human populations are needed to
clarify this situation. One manifestation of global
warming over the past 50 years is an increased duration
of heatwaves in Alaska, Canada, central and eastern
Europe, Siberia, and central Australia (data for South
America and Africa are unavailable).121 Although no one
extreme event can be attributed solely to climate change,
the probability of a particular event occurring under
modified climatic conditions can be estimated. Recent
studies have shown that the record-breaking 2003
European summer heatwave was consistent with climate-

change modelling31,32 and substantially attributable to
human-induced warming.33

Rainfall seems to have become more variable globally,
and the frequency of intense rainfall has increased in
some areas.1 However, evidence that climate change has
affected the frequency or magnitude of river floods is
inconsistent.81,122,123 Globally there has been a substantial
increase in the risk of great floods (ie, in river basins
larger than 200 000 km2 and at levels greater than
100 years) over the past century.47 At this stage,
therefore, to attribute changes in flood-related health
effects to climate change is difficult.

Infectious diseases
Several recent reports have shown that climate change
might be affecting some infectious diseases—although
no one study is conclusive. Tick-borne (viral)
encephalitis in Sweden has reportedly increased in
response to a succession of warmer winters over the
past two decades,77,78 although this interpretation is
contested.79 The geographic range of ticks that transmit
Lyme borreliosis and viral encephalitis has extended
northwards in Sweden78 and increased in altitude in the
Czech Republic.124 These extensions have accompanied
recent trends in climate.78,125

Changes in the intensity (amplitude) of the El Niño
cycle since 1975, and more recently its frequency—both
probably manifestations of climate change—have been
accompanied by a strengthening of the relation between
that cycle and cholera outbreaks in Bangladesh.62 The
cholera vibrio naturally harbours within coastal and
estuarine marine algae and copepods, whose
proliferation is affected by sea-surface temperature and
other environmental factors.63 Evidence of marine
ecosystem changes linked to climate trends126 indicates
that climate change is amplifying harmful algal
blooms.64,127

There is some, though inconclusive, evidence of
increases in malaria in the eastern African highlands in
association with local warming. Several investigators
have documented an increase in highland malaria in
recent decades,80–82 including in association with local
warming trends.83,128 Although two other studies showed
no statistically significant trends in climate in those
same regions,84,85 the medium-resolution climate data
used129 were not well suited to research at this smaller
geographical scale.130

Within the climate range that limits the transmission
rate and geographic bounds of infectious disease, many
other social, economic, behavioural, and environmental
factors also affect disease occurrence. For example,
many environmental factors affect malaria incidence,
including altitude,131 topography,132 environmental
disturbance,74 short-term climate variability,75 ENSO,76,114

and longer-term climate trends.130 To make a
quantitative attribution of change in incidence to any
single factor is therefore difficult.
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Can current effects be estimated, if not yet directly
observed? The current burden of disease attributable to
climate change has been estimated by WHO as part of
the Global Burden of Disease (2000) project, a
comprehensive standardised risk assessment exercise
that underwent critical review.133 The estimation of
the attributable burden was a statistical exercise that
entailed three steps: (i) estimation of the baseline
average annual disease burden in 1961–90; (ii)
specification (from published work) of the increase
in disease risk per unit increase in temperature or other
climate variable; and (iii) estimation, by geographic
region, of the current and future global distributions of
population health effects of the change in climate. The
extent of climate change (relative to the 1961–90 average
climate) by the year 2000 is estimated to have caused in
that year around 160 000 deaths worldwide and the loss
of 5 500 000 disability-adjusted life-years (from malaria,
malnutrition, diarrhoeal disease, heatwaves, and floods).34

This exercise was conservative in several respects,
including being limited to quantifiable health outcomes.
Nevertheless, is it reasonable to attribute a proportion of
global deaths from malaria, malnutrition, or other such
outcomes in 2000, to the global warming that has taken
place since around 1975? The fact that equivalent
estimations are routinely made for other such relation-
ships involving a disease with known multivariate
causation—eg, the proportion of all stroke deaths in
2000 attributable to hypertension134—suggests that, in
principle, wherever a well documented exposure-effect
relation exists, the incremental change in health
outcome can legitimately be estimated for an incre-
mental exposure (eg, temperature).

A more specific question is, can we attribute to climate
change some fraction of the health effect associated with
a particular climatic event that itself is partly attributable
to climate change? For example, the probability of
occurrence of the severe European heatwave of 2003 was
estimated to have been doubled by the underlying
warming trend largely induced by human activities.33

Simple arithmetic therefore suggests that half the excess
heat was due to that warming. Thus we could infer that
approximately half of excess deaths during the 2003
heatwave were due to that underlying anthropogenic
contribution.

Estimates of future health effects
Climate change will have many effects on health over the
coming decades (figure 1). In view of the residual
uncertainties in modelling, how the climate system will
respond to future higher levels of greenhouse gases, and
uncertainties over how societies will develop econom-
ically, technologically, and demographically, formal
predictions of future health effects cannot be made. The
appropriate task is to make estimations, for future
modelled climate situations, of the consequent health
effects.136

This estimation can be done in three contexts: (i) in
classic experimental fashion, holding constant all other
non-climate factors likely to affect future health; (ii)
incorporating such factors acting independently into a
multivariate model, to estimate net changes in
population health burden; (iii) also incorporating effect-
modifying factors, especially those due to adaptive
responses. Not surprisingly, much of the initial
modelling research has been of type (i) above. Published
work consists of both reports of specific modelling
studies and of systematic assessments done over the
past decade by national governments (eg, UK, Australia,
USA, Portugal, Norway, Japan) and, recently, by WHO
as part of its global burden of disease (2000)
assessment.135

Extreme events
The early modelling of the effect of extreme events
assumed that climate change would act mainly by
shifting the mean values of temperature and other
meteorological variables. Little attention was paid to the
possibility of altered climate variability.136 Recently
however, there have been gains in the modelling of how
climatic variability will also change in future. One such
study, for example, has estimated that major cities in
Europe and northern USA will have substantial rises in
both frequency and duration of severe heatwaves by
2090.32 The importance of considering changes in
variability is illustrated in figure 3: small changes in
temperature variability, along with a shift in mean
temperature, can greatly increase the frequency of
extreme heat. Similar reasoning applies to other
meteorological variables. Because populations in high-
income countries are predicted to age substantially over
coming decades (the proportion aged over 60 years
increasing from 19% to 32% by 2050),137 and with a trend
towards urbanisation in all countries (projected to
increase from 45% in 1995 to 61% by 2030),138 a greater
proportion of people in all countries will be at risk from
heat extremes in future, even without substantial climate
change.139 In Australia, for a medium-emissions climate
change setting in 2050, the annual number of deaths
attributable to excess heat in capital city populations is
expected to increase by 50% to 1650 (assuming no
change in population size and profile).35

Conversely, the mortality risk from cold weather is
expected to decline in northern latitudes.36 Currently,
physiological and behavioural acclimatisation probably
explains the gradient in the low-temperature threshold
for increasing mortality, apparent from northern to
southern Europe.12 But whether populations can offset
temperature-related changes in mortality risks by
acclimatisation (eg, through changes in building
design12) is uncertain. 

The accurate estimation of future deaths from floods
and storms is impeded by the absence of empirically
documented exposure-response relations. Further, the
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typical spatial scale of global climate models—even at
the country level—is still too coarse for reliable
projections of precipitation.45 Unless current deficiencies
in watershed protection, infrastructure, and storm
drainage systems are remedied, the risk of water-borne
contamination events will probably increase.40

Infectious diseases
Climate change will affect the potential incidence,
seasonal transmission, and geographic range of various
vector-borne diseases. These diseases would include
malaria, dengue fever, and yellow fever (all mosquito-
borne), various types of viral encephalitis, schistoso-
miasis (water-snails), leishmaniasis (sand-flies: South
America and Mediterranean coast), Lyme disease (ticks),
and onchocerciasis (West African river blindness, spread
by black flies).86

The formal modelling of the effects of climate change
on vector-borne diseases has focused on malaria and
dengue fever. Modelling of dengue fever is conceptually
simpler than for malaria. Whereas malaria entails two
main pathogen variants (falciparum and vivax) and relies
on several dozen regionally dominant mosquito species,
dengue fever transmission depends principally on one
mosquito vector, Aedes aegyptii. Both statistical and
biologically based (mathematical) models have been
used to assess how a specified change in temperature
and rainfall pattern would affect the potential for
transmission of these and other vector-borne diseases. 

Various research groups have published estimates of
how climate change will affect future transmission of
malaria.87–93 Biologically based models of climate-malaria
futures depend on the documented mathematical
relation between temperature and transmission,
including a simple threshold for the effect of rainfall.
Empirical statistical models can account for interactions
between temperature and rainfall effects, but are
affected by the uncertainty of modelled projections of
future rainfall.92 Several models project a small
geographical expansion of potential malaria
transmission in the next few decades,88,90 with some
estimating more substantial changes later this
century.90,91,93 In several studies that have modelled
seasonal changes in transmission researchers estimate a
substantial extension—such as a 16–28% increase in
person-months of exposure to malaria in Africa by
2100.89

Three research groups have estimated how climate
change will affect dengue fever. Early models were
biologically based, driven mainly by the known effect of
temperature on virus replication within the mosquito.
Warmer temperatures (up to a threshold) shorten the
time for mosquitoes to become infectious, increasing
the probability of transmission.94 Studies with both
biologically based94 and statistical models95 project
substantial increases in the population at risk of dengue
(eg, figure 4). 

Such modelling excludes many (often unforeseeable)
non-climate aspects of the future world. Nevertheless,
estimation of how the intrinsic probability of disease
transmission would alter in response to climate change
alone is informative—and accords with classic experi-
mental science (see type (i) in Estimates of future health
effects). Whether the change in disease transmission
actually occurs also depends on non-climate factors;
presence of vector and pathogen is prerequisite, as is
vector access to non-immune people. The transmission
of such diseases is also much affected by socioeconomic
conditions and by the robustness of public health
defences.91,140,141 For example, case surveillance and
treatment in fringe areas, management of deforestation
and surface water, and effective mosquito control
programmes would tend to offset the increased risk due
to climate change, whereas universally-funded bed-net
campaigns would reduce infection rates. Future
modelling will benefit by incorporation of those non-
climate contextual changes that are reasonably
foreseeable. 

Other health effects
Beyond the specific and quantifiable risks to health are
indirect and knock-on health effects due to the social,
economic, and political disruptions of climate change,
including effects on regional food yields and water
supplies. Modelling of climate change effects on cereal
grain yields indicates a future world of regional winners
and losers, with a 5–10% increase in the global number
of underfed people.97 The conflicts and the migrant and
refugee flows likely to result from these wider-ranging
effects would, typically, increase infectious diseases,
malnutrition, mental health problems, and injury and
violent death. Future assessments of the health effects of
climate change should attempt order-of-magnitude
estimates of these more diffuse risks to health.
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The wider ramifications of climate change for health
are well illustrated by a recent study of how ocean
warming around the Faroe Islands will facilitate the
methylation of (pollutant) mercury and its subsequent
uptake by fish. Concentrations in cod and pilot whales
would increase by an estimated 3–5% for a 1ºC rise in
water temperature.99 Eating methyl-mercury-contam-
inated fish impairs fetal-infant neurocognitive develop-
ment.142 Further, ocean warming is already beginning to
cause geographic shifts in fisheries.100 Climate change
might also alter the timing and duration of pollen and
spore seasons and the geographic range of these
aeroallergens, affecting allergic disorders such as hay
fever and asthma.48

The advent of changes in global climate signals that
we are now living beyond Earth’s capacity to absorb a
major waste product: anthropogenic greenhouse gases.
The resultant risks to health (and other environmental
and societal outcomes) are anticipated to compound
over time as climate change—along with other large-
scale environmental and social changes—continues. 

Research on climate, climate change, and health has
focused largely on thermal stress, other extreme
weather events, and infectious diseases. The wider
spectrum of health risks should now be given more
attention. With the adaptability of human culture, many
communities will be able to buffer themselves (at least
temporarily) against some of the effects of climate
change. Buffering capacity, though, varies greatly
between regions and communities, indicating
differences in geography, technological resources,
governance, and wealth.143 Research to characterise
vulnerable groups is needed. 

Knowledge of vulnerability allows an informed
approach to development and evaluation of adaptive

strategies to lessen those health risks. Although details144

are beyond our scope here, it is noteworthy that
governments are now paying increasing attention to
adaptation options. Researchers must engage, too, with
the formulation, evaluation, and economic costing of
adaptive strategies. Beyond structural, technological,
procedural, and behavioural adaptations by at-risk
communities are larger-scale technical possibilities—
such as applying satellite data and computer modelling
to natural disaster forecasting, and geographic
information system modelling of the effect of changes in
rainfall and vegetation on specific infectious diseases.
Other generalised strategies include protection from
coastal storm surges, improved sentinel case
surveillance for infectious diseases, development of
crops resistant to drought and disease, and most
importantly, the fostering of renewable energy sources.

Conclusion
Research into the existence, future likelihood, and
magnitude of health consequences of climate change
represents an important input to international and
national policy debates. Recognition of widespread
health risks should widen these debates beyond the
already important considerations of economic
disruption, risks to infrastructure, loss of amenity, and
threatened species. The evidence and anticipation of
adverse health effects will indicate priorities for planned
adaptive strategies, and crucially, will strengthen the
case for pre-emptive policies. It will help us understand
better the real meaning of sustainability.
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